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Steady plane periodic waves on the surface of an ideal liquid above a horizontal 
bottom are considered. The flow is irrotational. Let Q denote the volume flow 
rate, R the total head and S the flow force for the wave train. Bounds on wave 
properties are obtained in terms of the properties of (i) the conjugate streams 
with the same Q and R, and (ii) the conjugate streams with the same Q and 8. 

1. Introduction 
In  appropriate non-dimensional variables, as in Benjamin & Lighthill (1954), 

the problem for periodic water waves (defined in physical terms in the abstract 
above) is as follows. Here z = x + i y  is the complex position co-ordinate, 

X = $+i$ 

is the complex potential and w = (dx/dx)-l = u- iv  is the complex velocity. 
Define M = {x = $ + i$ I - co < q5 < o 0 , O  < $ < l}. Consider the set of functions 
x ( x )  holomorphic in M with both w(x) and z ( x )  continuous on 

y = 0 on $ = 0 for all$, (1.la) 

+q2+y = +R = constant on $ = 1 for all $, ( l . l b )  

such that 

where Q = l W ( $ + i ) l ,  

y is even in $, ( l . l c )  

y is periodic in $ (with period A). (1 . ld )  

Define CEA/A,  A ~ X ( ~ A , O ) - X ( - + S R , O )  

and r(4)  = !I($, 1) for all 4. 
The function z ( x )  = hx, where h is a real constant, satisfies (1 .1) .  Such solutions 

are called uniform streams. Solutions for which w(x) is not constant are called 
waves. Solutions for which u > 0 everywhere and v >, 0 for -&A < $ < 0, like 
that shown in figure 1, will be considered. Wave solutions with these properties 
are known to exist (Krasovskii 1960, 1961). 

We define the heights of the wave at  the crest and at  the trough respectively by 

h , r  sup q(q5), h, 5 inf y(q5). 
-m<$<w --m<@<m 
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FIGURE 1. (a) z plane. ( b )  x plane. 
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FIGURE 2. (a)  The sluice gate: a transition where R is constant. 
(b )  The bore: a transition where S is constant. 

It is known that, for any solution of ( l . l ) ,  

is a constant independent of 4 (Benjamin & Lighthill 1954). 
It is shown in propositions 1R and 1 8  that, for any wave solution of ( l . l ) ,  

R > 1 and S > 1. (The inequalities are trivial for uniform streams.) It is a long- 
standing conjecture (not finally settled) that, for any fixed R > 1, there exists 
a one-parameter family of wave solutions of (1 .1)  with h, between a minimum 
value sl, defined in equation (2.1), and a maximum value which is less than or 
equal to h, = $R. 

2. Conjugate streams 
We now state some simple relations for the conjugate streams with wliich we 

shall compare the water waves. When R (or S )  is fixed the conjugate streams are 
traditionally illustrated as in figure 2 (a) (or figure 2 b). 

In  figure 2 (a) the conjugate depths sj satisfy, or more accurately are defined by, 

S; - -5jRsj” + & = 0. (2.1) 

For R > 1 this has only two positive roots s1 and s2, with 

(3R)-* < s2 < R-* < 1 < R < sl < $R. 

A s j  takes the values I and 2 let j’  take the values 2 and 1. Then s1 and s2 are 
related by sjr  = [ 1 + (1 + ss;)q/4sj”, 
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and so 

Similarly, in figure 2 (b ) ,  the conjugate depths r j  are defined by 

&(s1+s2) = s"lsf > 1. 

&rj3-+Srj+l = 0. 

2/(3S) < r2 < 8-l < 1 < S* < rl < (3S)a. 

For S > 1 this has only two positive roots rl and r2, with 

With the same notation as above, rl and r2 are related by 

rip = Q[ - r; + (6 + %,)a], 
2/(r, + r 2 )  = r1r2 < 1. and so 
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(2.2) 

3. Bounds for water waves 
Inequalities (3.1)-( 3.3) below are basic to everything that follows. 

Maximum principle result. Consider wave solutions of (1.1). Let qt and qc 
denote the flow speeds on @ = 1 at  the trough D and crest C respectively. Then 

qc < Iw(x)I < yt for all x in Q. 

In particular, Qehc < 1 < 9 t h  (3.1) 

Further 

and (3.3) 

Proof. Since w(x)  is holomorphic in i2 the maximum value of q2 occurs on the 
boundary. Further, w(x)-l is holomorphic in SZ because w(x)  has no zeros in i2. 
(Since u is harmonic and non-constant it cannot have a minimum in the interior 
Q. The velocity u is also non-negative, thus it has no zero in !2 and so the result 
follows.) Thus the minimum value of y2 occurs on the boundary. 

From our assumption that the free surface rises monotonically between the 
trough D and crest C, using the Bernoulli equation we have 

9 k  < lw($+i)l < 9t- 

Again from the geometry of the flow sketched in figure 1, using the Cauchy- 
Riemann equations u6 = -v$ and u$ = +v4, u decreases from D to A (where 
u$ = v+ 2 0) ,  from A to B (where u+ = -v@ < 0 )  and from B to C (where 
u@ = v+ 6 0). This establishes the inequality qc < Iw(x)/ < qt for all x in Q. 
Then (3.1) follows by using this, at $ = 0 and @ = - *A, in 

To prove (3.2) and (3.3) the Schwarz inequality is applied, at  @ = 0 and 
@ = - &I respectively, as follows: 
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The full statement of (3.2) then follows from 
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a 1  I,, u($, $) d$ = -v($, 1) 6 0 for -$A < $ 6 0. 

We remark that (3.1) and with a little more argument (3.2) and (3.3), and also 

h;l 6 u($, 0) 6 htl ,  

follow from the Lavrentiev-Serrin comparison theorems (Lavrentiev 1964, p. 
19; Serrin 1952a, b ) .  One 'compares' the wave solution with uniform flows of 
depths h, and h,, and the same volume flow rates. 

PROPOSITION 1R. Consider a periodic wave train as before with total head R. 
Then R > 1. Let h, and h, be the heightsof the crest and trough of the wave. Let 
s1 and s2 denote the depths of subcritical and supercritical uniform streams 
with the given R. Then 

s2 < h, < s1 < h,. (3.4) 

Proof. Define %(h) = +h-'+gh. (3.5) 

A graph of 9 ( h )  is given in figure 3 (u). Note that 

min%(h) = 1. 
h>O 

We shall show that 
2(h,)  > R > 2(ht ) ,  

and since W(h,) > 1 then R > 1 .  Thus s1 and s2 are defined as in $2, so that 

W(h,) > %(sl) = R = %(s2) > %(h,). 

The immediate implications of this are first that s2 < h, < s1 and second, since 
k ,  > h,, that h, > sl. See figure 3(a).  

Bernoulli gives iq: + h, = $R = i q ;  + h,. Using (3.1) 

9(h,) = +hT2+8h, > +q:+$h, = R = +q;+Qh, > $h;2+$ht = W(ht). 

This establishes (3.6) and hence (3.4). 

COROLLARY 1R. The following inequalities hold: 

q, < hC1 < s;l < htl < q, < s;l < s1 < h, < q;l, 

qc < h;l < s;l < s2 < 1 < s;l < s1 < h, < qcl, 

qc < hT1 < s l 1  < s2 < q t l  < h, < s1 < h, < qel. 

Proof. Since gR = i q 2  +'I inequality (3.4) implies that 

qc < 8,' < qt < SF'. 

This with (3.4), (2.1) and (3.1) gives the required inequalities. 

PROPOSITION 18. Consider a periodic wave train with flow force S. Then S > 1. 
Let h, and h, be as before. Let rl and r2 denote the heights of the subcritical and 
supercritical uniform streams with the given S. Then 

r2  < h, < r l .  (3.7) 
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Proof. Define Y ( h )  ZZ @-1+ *h2. 
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A graph of Y ( h )  is given in figure 3 (b) .  Note that 

minY(h) = 1. 
h> 0 

We shall show that 
23 > Y(ht) ,  (3.9) 

and since Y ( h t )  2. 1 then S > 1. Thus r, and r2  are defined as in $2, so that 

Y ( r l )  = X = Y ( r 2 )  > Y(h t ) ,  

The flow force [from (1.1 b )  and (1.2)] is defined by 
which implies that r2  < ht < rl. See figure 3 ( b ) .  

1 

0 
#S = +q27 + Qv2+ 1 s  u($, $) d$. 

Thus, using inequalities (3 .1 )  and (3.3),  

$8 > +h,-l+q&2+1h-l = 3 
2 1 2 t zYsp(ht). 

This establishes (3 .9) ,  that S > 9 ( h , )  and hence (3 .7 ) .  

COROLLARY 1s. The following inequalities hold: 

r2 < r i l  < hr1 < qt < rF1, 

r2 < r y l  < 1 < rl < rF1, 

r2 < qrl < h, < rl < r; l. 

Proof. Let ut(@) = u( - +A, $). Then 

Since q4/ut +ut 2 2qt and since h? 2 q t 2  from (3.1), 

$8 > #9(q t )  = #Y(q;') .  
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FIGURE 4 

Repeating the argument of the previous propositions we obtain 

rC1 < qt < vgl. (3.10) 

This wiih (3.7), (2.2) and (3.1) gives the required inequalities. 

CONJECTURE IS. It is conjectured that 

rl c; h,. 

This is true if and only if Y(h,)  > S. 

CONJECTURE 2s .  It is conjectured that 

4, < T i 1 .  

This is true if and only if .L”(q;l) > S. 
from (3.1), the truth of conjecture 2 s  follows if the, apparently 

stronger, conjecture I S  is true. Also the truth of conjecture I S  follows if the, 
apparently stronger, conjecture 2,  given below, is true. 

PROPOSITION 2. Consider a periodic wave train with total head R as in propo- 

Using qc < 

sition IR. Define t,he flow force S using (1.1): 

(3.11) 

(3.12) 

(3.13) 

Then by definition a(sj) = Sj and a’(sj) = 0. A graph of cr(h) is shown in figure 4. 
We shall show that 

2 &), (3.14) 
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FIGURE 5 

and since s, < h, < s1 we then have from the properties of (r above 

Thus S > S, as required. 

minus sign. This completes the proof of (3.14) and hence (3.12). 

a(h,) > ~(8,) = S,. 

Inequality (3.14) follows immediately from definitions and (3.3) with the 

Similarly, or from the above, for a periodic wave train with total head R, 
R < R, = 9 ( s z ) .  

Define C(7) ?,?3-3R~z+3S7-1. 
Solutions of (1.1) satisfy 

C(?,?) = + # , W $ - 1 .  0 

All uniform streams have C(7) = 0. Consider next the roots of the cubic C(7)  = 0. 
Benjamin & Lighthill (1954) conjecture that this equation must have three 
real roots whenever R and S correspond to solutions of (1.1). Define 

A 3R2S2+6RS-1-4(R3+S3). 

All uniform streams have A = 0. Benjamin & Lighthill’s conjecture is that for 
values of R and S corresponding to wave solutions of (1.1) A > 0, the condition 
for three real roots. In  the R, S plane sketched in figure 5 ,  y1 is the curve A = 0 
with R < S and yz is the curve A = 0 with R > S. The unhatched region corre- 
sponds to all points with A > 0, the hatched region to all points with A < 0. 

CONJECTURE 2. All wave solutions of (1.1) have values of R and S such that 

We note that if conjecture 2 is true so is conjecture 1s.  First, A > 0 implies 
A > 0. 

so that h, > rl, which was the content of conjecture 1s. 
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FIGURE 6 

Of course, we already have some information on the values of R and S allowed 
for wave solutions. Propositions 1 imply that R > 1 and S > 1. Proposition 2 
implies that any points (R, S )  must lie above and to the left of the line y2 .  

Since A = - 4((S - B2)3 + ( - $RE + Q + R3)2), a necessary condition for A > 0 
is the following. 

PROPOSITION 3.  For any solution of (i.l),  S < R2. 

Proof. 9(R2 - X) = (a2 - 7)2 + 37q2 - 3 

Since 
r l  

J O  

the inequality is satisfied at  the trough, and hence everywhere. 
A final inequality, generalizing an inequality on solitary waves found by 

Starr (1947) and reported in Long (1956) and Keady & Pritchard (1974), follows 
from h, 6 h, = $R. It has long been known that there is a curve within the 
region A > 0 corresponding to waves of greatest height, for which h, = h,. 

PROPOSITION 4 .  C(h,) > 0, that is, - 2gR3 + ZRX - 1 > 0. 

Proof. This follows from the requirement that h, 6 h, and the following fact,s 
concerning C(7) and C’(7); 

C‘(7) = 3v2- 6R7 + 3 s  = -q2v + u d $  for h, < 7 6 h,. 
S O 1  

We have C(0) < 0, C(r2) > 0, C(s2) > 0, C(h,) > 0, C(h,) > 0 

and C’(0) > 0, C’(r2) > 0, C’(s2) > 0, C’(h,) < 0, C’fh,) > 0. 

From the form of the cubic function C(7) it is evident (see figure 6) that C(h,) > 0, 
and this completes the proof. The curve C(#R) = 0 is indicated by the dashed 
line in figure 5. 

The authors thank Professor T. B. Benjamin for suggesting the problem while 
one of us (G. K.) was working at  the Fluid Mechanics Research Institute at  the 
University of Essex. 
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